

From Protons to Collisions...

Lucian Harland-Lang, University of Oxford

Saturday Mornings of Theoretical Physics, Oxford, May 10 2019

The LHC: a proton-proton collider

- The LHC works by colliding proton beams head on at high energy.
- We examine the debris of these interactions for signs of the Higgs and its interactions.
- Before getting to that: we need to understand what we are colliding.
- The **proton**: What is it? What is it made of? How does it behave when given the LHC treatment?

What is the Proton?

A Proton Roadmap

• In 20th century, layers of proton complexity/substructure uncovered:

Observing Nuclear Structure

- Start of 20th century: no clear picture of structure of atom
- Need to 'look' **inside atom**. Idea: fire beam of particles at target of interest, and measure the corresponds scattering in detector.

Detector: Geiger and Marsden sitting in basement

Rutherford in 1909:

Beam: alpha particles from

radioactive source

Target: Gold Foil

• This basic idea is fundamentally unchanged today: forms the **basis of all particle physics.**

Rutherford Scattering

 α particles observed to occasionally deflect at very large angles. Could only be explained by compact, ~ point-like nucleus!

• Data well described by scattering due to electrostatic repulsion by positive 'point-like' charge:

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta} \propto \frac{Z^2 \alpha^2}{\sin^4\left(\frac{\theta}{2}\right)}$$

- In what sense was nucleus point-like? Only within resolution of experiment.
- Here 'point-like' scattering observed up to closest permitted approach of alpha particles ~ 30 fm (~ 1/10000th of atomic radius).

 $1\,\mathrm{fm} = 10^{-15}\,\mathrm{m}$

Looking Into the Proton

• By 1950s still no idea of internal structure of proton/neutrons. How to probe this? Use cleaner electron beam.

• Electron interacts with proton via photon exchange. Resolution $\overleftrightarrow{}$ $\overset{}{\sim}$ photon wavelength:

$$E = hf \Rightarrow \lambda = \frac{hc}{E}$$
$$\lambda < r_p$$

Thus higher energies ⇒ see further inside proton! Plugging in some
 (rough!) numbers... ~ Proton size
 Energy unit (LHC beam = 7000 GeV)

• Much less than LHC energies but at time required cutting edge technologies to accelerate electrons.

 $\lambda \not \sim \text{Im} \Rightarrow E = 1 \,\text{GeV}$

Looking Deeper

Quarks

• These objects, first given the agnostic label of 'partons' by Feynman, but soon identified with the 'quarks' needed to explain the 'hadron zoo'.

• Initially required 3 distinct types (**up**, **down**, **strange**). Since then 3 more discovered (**charm**, **bottom**, **top**).

1920

1950

P

The Proton

- **Proton** naturally described in quark model: one part of a larger family of 'baryons' - bound state of 3 quarks.
- Proton: two 'up' quarks and one 'down'.
- Quarks carry fractional electric charge:

Up quark: +2/3

```
Down quark: -1/3 Proton: 2 \times \frac{2}{3} - \frac{1}{3} = +1
```

• This is the basic idea, and it still holds true today. But more fundamental questions remained unanswered:

- * What is the **force** that is binding these quarks together?
- * How do we describe it theoretically?

Quantum Chromodynamics

- Nuclei as bound states of proton and neutrons: required introduction of completely new attractive **binding force**: the '**strong nuclear force**'.
- Can now be understood in terms of more fundamental quark interactions.
- New force carrying 'gluon' particle mediating interactions between quarks, which carry 'colour' charge.
- Mathematical framework direct generalisation of QED. New effects:
 - **◆ 3** different colour charges (just 1 electric charge).
 - Gluon carries charge: can self-interact! QCD **QED** \leftrightarrow u,b u,r Quarks **Electrons** \leftrightarrow lelepoor **Photons** Gluons \leftrightarrow Colour Electric \leftrightarrow gluon-gluon scattering s,r Charge Charge s,b

What do proton collisions at the LHC look like?

Colliding Protons

- How do we apply this model to proton collisions at the LHC?
- For now, stick with simpler electron-proton collision case.
- Basic idea: potentially complex **electron-proton** interaction really due to simple scattering between point-like **electron** and **quark** within proton.

• But is this really sensible? Can we simply ignore fact that quarks is part of a complex and strongly bound system (the proton)?

Colliding Protons

- Proton at rest: complex system of interacting quarks ($\tau_{qq} \approx 10^{-24} s$).
- However we are interested in very high energy proton collisions. Proton has velocity v ~ c, and relativity comes into the game.
- What does electron 'see'? **Time dilation**: proton 'clock' much slower than when at rest, electron only sees a ~ **static snapshot** of the proton!

 Electron-quark interaction time « timescale of internal quark interactions!

Colliding Protons

- Electron scatters off a quark within the **static** proton **snapshot**. The **quark interactions** within the proton are **frozen** and can be ignored.
- Valid to consider in terms of **free** quark-electron scattering.

$$\sigma(ep) \sim \sigma(eq) \checkmark$$

• Final element: what does the frozen distribution of quarks look like? Relevant degree of freedom: amount of proton's energy carried by quark.

• Introduce new variable:
$$x = \frac{E_{\text{quark}}}{E_{\text{proton}}}$$

 $0 < x < 1$
 1 quark has all
quark has no proton energy
energy

 $x \ll 1$

$$x = \frac{E_{\text{quark}}}{E_{\text{proton}}}$$

 $x \sim 1$ $x \ll 1$

Mapping out the Proton

• Statistical distribution known as 'Parton Distribution Function' (PDF).

f(x): Probability of finding a quark with energy fraction x in proton snapshot.

The Proton 'Sea'

• So far have only considered possibility of electronquark scattering. Seems sensible given basic **uud** picture of proton. But is this the **whole story**?

 π^+ (u \bar{d})

g TTT

p (uud)

g

88888

• **No!** In fact proton is a much more complex object than basic uud picture would predict. **Uncertainty principle**:

$$\Delta E \Delta t \sim \hbar$$

 \rightarrow Quark-antiquark pairs can snap in and out of existence if:

$$\Delta t < \frac{\hbar}{2m_q c^2}$$

• Proton is in fact filled with a 'sea' of quark-antiquark pairs and out of existence. In addition to so-called 'valence' uud.

• Back to the electron-proton collision: this seething proton sea is also ~ frozen in the proton snapshot.

→ Electron can scatter off these frozen quarkantiquark pairs!

$$x = \frac{E_{\text{quark}}}{E_{\text{proton}}}$$

• Back to the electron-proton collision: this seething proton sea is also ~ frozen in the proton snapshot.

→ Electron can scatter off these frozen quarkantiquark pairs!

$$x = \frac{E_{\text{quark}}}{E_{\text{proton}}}$$

 $x \ll 1$ $x \sim 1$

• Scattering rate becomes:

$$\sigma_{ep} = \int_0^1 \mathrm{d}x \left[f_q(x) \,\sigma_{eq}(x) + f_{\overline{q}}(x) \,\sigma_{e\overline{q}}(x) \right]$$

 $f_{\overline{q}}(x)$: Probability to find antiquark with energy fraction x within proton snapshot.

$$x = \frac{E_{\text{quark}}}{E_{\text{proton}}}$$

The Gluon Content of the Proton

- Sea of **gluons** constantly being exchanged between the quark constituents of proton, binding it together.
- Can also scatter off these objects!

$$x = \frac{E_{\text{quark}}}{E_{\text{proton}}}$$

- Sea of **gluons** constantly being exchanged between the quark constituents of proton, binding it together.
- Can also scatter off these objects!

$$x = \frac{E_{\text{quark}}}{E_{\text{proton}}}$$

$$\sigma_{ep} = \int_{0}^{1} dx \left[f_q(x) \sigma_{eq}(x) + f_{\overline{q}}(x) \sigma_{e\overline{q}}(x) + \sigma_{eg}(x) g(x) \right]$$

$$g(x) : \text{ Probability to find gluon with energy fraction } x \text{ within proton snapshot.}$$

$$x = \frac{E_{\text{quark}}}{E_{\text{proton}}}$$

$$x \ll 1 \qquad x \sim 1$$

Proton-Proton Collisions

- How does this picture change in the case of **proton-proton** collisions at the **LHC**? Answer: **not too much**.
- Proton-proton scattering = scattering of point-like quark/gluons.
- For example, simple socalled '**Drell-Yan**' process, leading to production of an electron-positron pair.

Extracting PDFs

- How do we actually **determine** these **PDFs**?
- **PDFs:** distribution of proton constituents, due to complex strong interactions. With current theoretical tools we **cannot predict** them.
- What we can do: determine them experimentally in processes we understand well and use to predict processes such as **Higgs** production.

The Proton Today

• Proton: a complex quantum-mechanical system. Active and ongoing programme of research to map it out:

How much of proton energy is carried by gluons? How much is in the quark sea?

* How significant are heavier (strange, charm, bottom, top...) quarks?

- * How do each of these vary with x?
- How well do we understand the connection between the proton and high-energy collisions?

• To probe the Higgs and stress test the Standard Model at the LHC we need to address these questions as **precisely** as we can.

Global PDF Fits

• Since the discovery of quarks, a vast array of data on proton collisions has been collected, from different colliders and via difference processes.

• Combining all of this we can perform a 'Global Fit' to PDFs, allowing us to pin down proton structure with **precision**.

Data Set	LO	INLO	ININLO
BCDMS $\mu p F_2$ [125]	162 / 153	176 / 163	173 / 163
BCDMS $\mu d F_2$ [19]	140 / 142	143 / 151	143 / 151
NMC $\mu p F_2$ [20]	141 / 115	132 / 123	123 / 123
NMC $\mu d F_2$ [20]	134 / 115	115 / 123	108 / 123
NMC $\mu n/\mu p$ [21]	122 / 137	131 / 148	127 / 148
$E665 \ \mu p \ F_2 \ [22]$	59 / 53	60 / 53	65 / 53
$E665 \ \mu d \ F_2 \ [22]$	52 / 53	52 / 53	60 / 53
SLAC ep F ₂ [23, 24]	21 / 18	31 / 37	31 / 37
SLAC ed F ₂ [23, 24]	13 / 18	30 / 38	26 / 38
NMC/BCDMS/SLAC/HERA F _L [20, 125, 24, 63, 64, 65]	113 / 53	68 / 57	63 / 57
E866/NuSea pp DY [88]	229 / 184	221 / 184	227 / 184
E866/NuSea pd/pp DY [89]	29 / 15	11 / 15	11 / 15
NuTeV $\nu N F_2$ [29]	35 / 49	39 / 53	38 / 53
CHORUS $\nu N \dot{F}_2$ [30]	25 / 37	26 / 42	28 / 42
NuTeV $\nu N xF_3$ [29]	49 / 42	37 / 42	31 / 42
CHORUS $\nu N x F_3$ [30]	35 / 28	22 / 28	19 / 28
CCFR $\nu N \rightarrow \mu \mu X$ [31]	65 / 86	71 / 86	76 / 86
NuTeV $\nu N \rightarrow \mu \mu X$ [31]	53 / 40	38 / 40	43 / 40
HERA e^+p NC 820 GeV[61]	125 / 78	93 / 78	89 / 78
HERA e^+p NC 920 GeV[61]	479 /330	402 /330	373/330
HERA e ⁻ p NC 920 GeV [61]	158/145	129/145	125/145
HERA e^+p CC [61]	41 / 34	34 / 34	32 / 34
HERA e^-p CC [61]	29 / 34	23 / 34	21 / 34
HERA ep F ₂ ^{charm} [62]	105/52	72 / 52	82 / 52
H1 99–00 e ⁺ p incl. jets [126]	77 / 24	14 / 24	_
ZEUS incl. jets [127, 128]	140/60	45 / 60	_
DO II $p\bar{p}$ incl. jets [119]	125 / 110	116 / 110	119 / 110
CDF II $p\bar{p}$ incl. jets [118]	78 / 76	63 / 76	59 / 76
CDF II W asym. [66]	55 / 13	32 / 13	30 / 13
DO II $W \rightarrow \nu e$ asym. [67]	47 / 12	28 / 12	27 / 12
DØ II $W \rightarrow \nu \mu$ asym. [68]	16 / 10	19 / 10	21 / 10
DØ II Z rap. [90]	34 / 28	16 / 28	16 / 28
CDF II Z rap. [70]	95 / 28	36 / 28	40 / 28
ATLAS W^+, W^-, Z [10]	94/30	38/30	39/30
CMS W asymm $p_T > 35$ GeV [9]	10/11	7/11	9/11
CMS asymm $p_T > 25$ GeV, 30 GeV[77]	7/24	8/24	10/24
LHCb $Z \rightarrow e^+e^-$ [79]	76/9	13/9	20/9
LHCb W asymm $p_T > 20 \text{ GeV}[78]$	27/10	12/10	16/10
CMS $Z \rightarrow e^+e^-$ [84]	46/35	19/35	22/35
ATLAS high-mass Drell-Yan [83]	42/13	21/13	17/13
CMS double diff. Drell-Yan [86]	<u> </u>	372/132	149/132
Tevatron, ATLAS, CMS $\sigma_{t\bar{t}}$ [91]–[97]	53/13	7/13	8/13
ATLAS jets (2.76 TeV+7 TeV)[108, 107]	162/116	106/116	-
CMS jets (7 TeV) [106]	150/133	138/133	-

Where are we now?

• The wealth of available high precision data is unprecedented.

Where are we now?

• The theoretical calculations for the processes entering PDF fits are

certainly keeping up with the data!

Five-loop contributions to low-Nnon-singlet anomalous dimensions in QCD $(\alpha_S)^5$

 $\gamma_{\rm ns}^{(4)+}(N=2) =$

 $C_{F}^{5}\left[\frac{9306376}{19683}-\frac{802784}{729}\zeta_{3}-\frac{557440}{81}\zeta_{5}+\frac{12544}{9}\zeta_{3}^{2}+8512\,\zeta_{7}\right]$ $- C_A C_F^4 \left[\frac{81862744}{19683} - \frac{1600592}{243} \zeta_3 + \frac{59840}{81} \zeta_4 - \frac{142240}{27} \zeta_5 + 3072 \,\zeta_3^2 - \frac{35200}{9} \zeta_6 + 19936 \,\zeta_7 \right]$ $+C_{A}^{2}C_{F}^{3}\left[\frac{63340406}{6561}-\frac{1003192}{243}\zeta_{3}-\frac{229472}{81}\zeta_{4}+\frac{61696}{27}\zeta_{5}+\frac{30976}{9}\zeta_{3}^{2}-\frac{35200}{9}\zeta_{6}+15680\zeta_{7}\right]$ $-C_A^3 C_F^2 \left[\frac{220224724}{19683} + \frac{4115536}{729} \zeta_3 - \frac{170968}{27} \zeta_4 - \frac{3640624}{243} \zeta_5 + \frac{70400}{27} \zeta_3^2 + \frac{123200}{27} \zeta_6 + \frac{331856}{27} + C_A^4 C_F \left[\frac{266532611}{39366} + \frac{2588144}{729} \zeta_3 - \frac{221920}{81} \zeta_4 - \frac{3102208}{243} \zeta_5 + \frac{74912}{81} \zeta_3^2 + \frac{334400}{81} \zeta_6 + \frac{178976}{27} \right]$ $-\frac{d_{AA}^{(4)}}{N_{A}}C_{F}\left[\frac{15344}{81}-\frac{12064}{27}\zeta_{3}-\frac{704}{3}\zeta_{4}+\frac{58400}{27}\zeta_{5}-\frac{6016}{3}\zeta_{3}^{2}-\frac{19040}{9}\zeta_{7}\right]$ $+\frac{d_{FA}^{(4)}}{N_F}C_F\left[\frac{23968}{81}-\frac{733504}{81}\zeta_3+\frac{176320}{81}\zeta_5+\frac{6400}{3}\zeta_3^2+\frac{77056}{9}\zeta_7\right]$ $-\frac{d_{FA}^{(4)}}{N_F}C_A\left[\frac{82768}{81}-\frac{555520}{81}\zeta_3+\frac{10912}{9}\zeta_4-\frac{1292960}{81}\zeta_5+\frac{84352}{27}\zeta_3^2+\frac{140800}{27}\zeta_6+12768\zeta_7\right]$ $+ n_{f}C_{F}^{4} \left[\frac{1824964}{19683} - \frac{463520}{243}\zeta_{3} + \frac{21248}{81}\zeta_{4} - \frac{16480}{81}\zeta_{5} + \frac{6656}{9}\zeta_{3}^{2} - \frac{6400}{9}\zeta_{6} + \frac{8960}{3}\zeta_{7} \right]$ $-n_{f}C_{A}C_{F}^{3}\left[\frac{3375082}{6561}-\frac{420068}{243}\zeta_{3}-\frac{48256}{81}\zeta_{4}+\frac{458032}{81}\zeta_{5}+\frac{3968}{3}\zeta_{3}^{2}-\frac{8000}{3}\zeta_{6}+\frac{4480}{3}\zeta_{7}\right]$ $+n_{f}C_{A}^{2}C_{F}^{2}\left[\frac{15291499}{13122}+\frac{1561600}{243}\zeta_{3}-\frac{114536}{27}\zeta_{4}-\frac{252544}{243}\zeta_{5}+\frac{24896}{27}\zeta_{3}^{2}+\frac{13600}{27}\zeta_{6}+\frac{13600}{27}\zeta_{7}+\frac{1360}{27}\zeta_{7}$ $-n_{f}C_{A}^{3}C_{F}\left[\frac{48846580}{19683}+\frac{4314308}{729}\zeta_{3}-\frac{274768}{81}\zeta_{4}-\frac{1389080}{243}\zeta_{5}+\frac{27808}{81}\zeta_{3}^{2}+\frac{184000}{81}\zeta_{6}+\frac{1100}{243}\zeta_{7}+\frac{1100}{243$ 3908 $+n_{f}\frac{d_{FA}^{(4)}}{N_{F}}\left[\frac{22096}{27}+\frac{43712}{81}\zeta_{3}-\frac{512}{9}\zeta_{4}-\frac{217280}{81}\zeta_{5}-\frac{25088}{27}\zeta_{3}^{2}+\frac{25600}{27}\zeta_{6}-2464\zeta_{7}\right]$ $-n_f C_F rac{d_{FF}^{(4)}}{N_F} \left[rac{17075}{81}
ight.$ $\left[\frac{170752}{81}-\frac{328832}{81}\zeta_3+\frac{650240}{81}\zeta_5-\frac{8192}{9}\zeta_3^2-\frac{35840}{9}\zeta_7\right]$ $+n_{f}C_{A}\frac{d_{FF}^{F}}{N_{F}}\left[\frac{207824}{81}+\frac{251392}{81}\zeta_{3}-\frac{5632}{9}\zeta_{4}-\frac{522880}{81}\zeta_{5}+\frac{15872}{27}\zeta_{3}^{2}+\frac{70400}{27}\zeta_{6}-\frac{29120}{9}\zeta_{7}\right]$ $+\,n_{f}^{2}\,C_{F}^{3}\left[\,\frac{1082297}{6561}-\frac{145792}{243}\,\zeta_{3}+\frac{1072}{81}\,\zeta_{4}+\frac{55552}{81}\,\zeta_{5}+\frac{1792}{9}\,\zeta_{3}^{2}-\frac{3200}{9}\,\zeta_{5}^{2}\right]$ $+n_{f}^{2}C_{A}C_{F}^{2}\left[\frac{332254}{2187}-\frac{85016}{243}\zeta_{3}+\frac{20752}{27}\zeta_{4}-\frac{28544}{81}\zeta_{5}-\frac{13952}{27}\zeta_{3}^{2}+\frac{1600}{27}\zeta_{6}^{2}\right]$ $+\,n_{f}^{2}\,C_{A}^{2}\,C_{F}\,\Big[\,\frac{631400}{6561}\,+\,\frac{214268}{243}\,\zeta_{3}-784\,\zeta_{4}-\frac{53344}{243}\,\zeta_{5}+\frac{25472}{81}\,\zeta_{3}^{2}\,+\,$ 22400 % 81 56 $-n_{f}^{2} \frac{d_{FF}^{(4)}}{N_{F}} \left[\frac{43744}{81} - \frac{35648}{81} \zeta_{3} - \frac{1792}{9} \zeta_{4} - \frac{52480}{81} \zeta_{5} + \frac{2048}{27} \zeta_{3}^{2} + \frac{12800}{27} \zeta_{6} \right]$ $+ n_{f}^{3} C_{F}^{2} \left[\frac{265510}{19683} + \frac{11872}{729} \zeta_{3} - \frac{128}{3} \zeta_{4} + \frac{512}{27} \zeta_{5} \right]$ $+\,n_{f}^{3}\,C_{A}\,C_{F}\left[\,\frac{168677}{19683}+\frac{11872}{729}\,\zeta_{3}+\frac{2752}{81}\,\zeta_{4}-\frac{4096}{81}\,\zeta_{5}\,\right]-\,n_{f}^{4}\,C_{F}\left[\,\frac{5504}{19683}+\frac{1024}{729}\,\zeta_{3}-\frac{128}{81}\,\zeta_{4}\,\right]\,,$

+ 1.5 more pages!

Where are we now?

• Data and theory at **unprecedented level of precision** provide unique opportunity to really pin down proton structure like never before.

The Proton Backbone

• Within our precise mapping, many features present...

 $u - \overline{u}, d - \overline{d}$ xf• 'Valence' up and down quark structure consistent with basic **uud** picture.

- $u_V \approx 2d_V$
- Peaked at $x \approx \frac{1}{3}$.

Gluons

• What happens when we add gluons into the picture?

Gluons!

The Gluon: Zooming In

• **Roughly** 50% of proton energy carried by gluons. Research today: pinning this statement down with **high precision**.

Modern fits now achieve
~ 1% level precision in many regions.

• Not always the case. Key question: how can we best exploit LHC to push into less understood regions?

The Quark Sea

• Quark sea completely dominant over 'valence' uud in many regions.

• Crucial to pin these down precisely- direct relevant to LHC physics.

What next?

• Data and theory at **unprecedented level of precision** provide unique opportunity to really pin down proton structure. But also a challenge:

- * Dealing with **complex**/computationally expensive **theory** effectively.
- * Dealing with cases where data and theory **do not agree** to the high precision standard we require.
- Re-evaluating foundations: are PDF uncertainties accurate as well as precise? Other 'theory' uncertainties/biases hidden in fits?
- Perhaps we can calculate PDFs after all? Applying numerical
 'lattice' techniques to predict PDFs, rather than fitting them.
- ...and much more besides. Ensuring that our knowledge of PDFs matches requirements for understanding in detail the Higgs at the LHC.

Higgs Production at the LHC

- We have all we need to go from protons to collisions at the LHC.
- Key idea: LHC is not really a proton-proton collider. It is a quarkquark, gluon-gluon... collider.

• Next question: how do we predict the rate of Higgs boson production from quark-quark, gluon-gluon... collisions? On to Fabrizio...

 $\sigma(pp \to h + X) \sim \sigma(gg \to h) \otimes g(x_1, Q)$

Thank you for listening!